Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581034

RESUMO

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ependimoma , Glioma Subependimal , Neoplasias Supratentoriais , Criança , Humanos , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular , Neoplasias do Sistema Nervoso Central/genética , Ependimoma/patologia , Hibridização in Situ Fluorescente , Neoplasias Supratentoriais/patologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
2.
Clin Genet ; 105(5): 581-583, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379111

RESUMO

A case of mosaic MTOR-associated hemimegalencephaly and hypomelanosis of Ito, died at 33 probably because of sudden unexpected death in epilepsy. Assessment of the variant allele fraction (VAF) in different tissues postmortem showed high variability not correlated with clinical features, representing the most detailed assessment of VAFs in different tissues to date.


Assuntos
Hipopigmentação , Humanos , Hipopigmentação/genética , Alelos , Autopsia , Serina-Treonina Quinases TOR
3.
Dig Liver Dis ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37845155

RESUMO

BACKGROUND AND AIMS: In colorectal cancer (CRC), HER2 targeting is a promising treatment and immune infiltrate is an important area of research and strategy. Data regarding HER2 status and immune infiltrate are lacking. The aim of this study was to compare the immune infiltrate between HER2 amplified and non-amplified categories in proficient MisMatchRepair (pMMR)/microsatellite stable (MSS) CRC. METHODS: HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization were performed in a retrospective series of 654 CRC. Lymphocyte infiltrate was analysed by anti-CD3, CD8 and CD4 IHC and evaluated digitally using QuPath software. RESULTS: Among the 654 CRC, we first observed a decreased CD3+ and CD8+ infiltrate between HER2 amplified (all IHC 3+ except one 2+) and non-amplified HER2 2+ IHC CRC (p = 0.059 and 0.072 respectively). A supplementary analysis of 258 pMMR/MSS CRC from the previous cohort, displaying all the IHC scores (0, 1+, 2+, 3+), showed a lower CD3+ infiltrate between HER2 amplified versus HER2 0 (p = 0.002), 1+ (p = 0.088) and non-amplified 2+ (p = 0.081) IHC cases. CONCLUSIONS: Our original findings suggest that in pMMR/MSS CRC, the immune infiltrate is reduced in HER2 amplified versus other HER2 categories. These data might be useful for future strategies combining anti-HER2 treatments and immune checkpoint inhibitors and need to be confirmed in larger CRC cohorts.

4.
Oncogene ; 42(24): 2031-2045, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37147437

RESUMO

Mounting evidence is identifying human cytomegalovirus (HCMV) as a potential oncogenic virus. HCMV has been detected in malignant gliomas. EZH2 and Myc play a potential oncogenic role, correlating with the glioma grade. Herewith, we present the first experimental evidence for HCMV as a reprogramming vector, straight through the dedifferentiation of mature human astrocytes, and generation of CMV-Elicited Glioblastoma Cells (CEGBCs) possessing glioblastoma-like traits. HCMV counterparts the progression of the perceived cellular and molecular mechanisms succeeding the transformation and invasion processes with CEGBCs involved in spheroid formation and invasiveness. Glioblastoma multiforme (GBM) biopsies were characterized by an elevated EZH2 and Myc expression, possessing a strong positive correlation between the aforementioned markers in the presence of HCMV. From GBM tissues, we isolated HCMV clinical strains that transformed HAs toward CEGBCs exhibiting upregulated EZH2 and Myc. Spheroids generated from CEGBCs possessed invasion potential and were sensitive to EZH2 inhibitor, ganciclovir, and temozolomide triple therapy. HCMV clinical strains transform HAs and fit with an HCMV-induced glioblastoma model of oncogenesis, and supports the tumorigenic properties of Myc and EZH2 which might be highly pertinent in the pathophysiology of astrocytic brain tumors and thereby paving the way for new therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Infecções por Citomegalovirus , Proteína Potenciadora do Homólogo 2 de Zeste , Glioblastoma , Proteínas Proto-Oncogênicas c-myc , Humanos , Astrócitos/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...